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ABSTRACT
Linear analysis and Monte Carlo simulation are two well-

established methods for statistical tolerance analysis of
mechanical assemblies. Both methods have advantages and
disadvantages. The Linearized Method, a form of linear
analysis, provides fast analysis, tolerance allocation, and the
capability to solve closed loop constraints. However, the
Linearized Method does not accurately approximate nonlinear
geometric effects or allow for non-normally distributed input or
output distributions. Monte Carlo simulation, on the other hand,
does accurately model nonlinear effects and allow for non-
normally distributed input and output distributions. Of course,
Monte Carlo simulation can be computationally expensive and
must be re-run when any input variable is modified.

The second-order tolerance analysis (SOTA) method
attempts to combine the advantages of the Linearized Method
with the advantages of Monte Carlo simulation. The SOTA
method applies the Method of System Moments to implicit
variables of a system of nonlinear equations. The SOTA method
achieves the benefits of speed, tolerance allocation, closed-loop
constraints, non-linear geometric effects and non-normal input
and output distributions. The SOTA method offers significant
benefits as a nonlinear analysis tool suitable for use in design
iteration.

A comparison was performed between the Linearized
Method, Monte Carlo simulation, and the SOTA method.  The
SOTA method provided a comparable nonlinear analysis to
Monte Carlo simulation with 106 samples.  The analysis time of
the SOTA method was comparable to the Linearized Method.

1. INTRODUCTION
Tolerance analysis is increasingly becoming an important

tool for mechanical design. This seemingly arbitrary task of
assigning tolerances can have a large effect on the cost and
performance of manufactured products.  With the increase in
competition in today’s marketplace, small savings in cost or
small increases in performance may determine the success of a
product.

This paper proposes a new second-order tolerance analysis
(SOTA) method. The development of the SOTA method was
motivated by the differences in capabilities between two well-
established tolerance analysis methods: the Linearized Method
and Monte Carlo simulation. The SOTA method specifically
addresses tolerance analysis of vector-loop tolerance models.
The following three sections introduce vector-loop tolerance
models, the Linearized Method and Monte Carlo simulation.

1.1 Vector-loop Tolerance Models
Vector loops can be used to model manufactured

assemblies.  Figure 1 shows an example of a two-dimensional
assembly described by three vector loops. A vector-loop
tolerance model mathematically establishes how the
manufactured lengths and angles of each component combine in
order to properly assemble together.  The vector loops are able
to model dimensional, form and kinematic variations.

Loop 2

Loop 1

Loop 3

Figure 1: Vector-loop Assembly Model

Vector-loop closure is an important condition for assembly
tolerance analysis.  Closure simply refers to the condition when
the beginning of the vector loop is the same position and
orientation as the end of the loop.  Loop closure is the
mathematical equivalent of an assembly fitting together with no
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clearance between parts.  The loop closure condition can be
written as the system of nonlinear equations:

h(x,u) = 0 (1)

where h is the system of loop equations, x is the set of vectors
representing manufactured component dimensions, and u is the
set of vectors representing unknown assembly lengths and
angles.  The unknown assembly lengths and angles are the
kinematic assembly dimensions that change as a function of the
component dimensions.

1.2 Linearized Method
The Linearized Method is a vector-loop-based method of

assembly tolerance analysis.  The method’s name comes from
the fact that the nonlinear equations of the vector-loop model
are linearized for the analysis.  The linearized equations
determine how small changes of the component dimensions,
form and contact affect an assembly.  For this method only one
assembly needs to be analyzed statistically.  Linear analysis is
extremely fast and allows for tolerance allocation and design
iteration.  It is, however, limited to normal component
distributions and cannot be applied to non-normal assembly
distributions.

When tolerances are small compared to the nominal
dimension, on the order of 1/100 to 1/1000, the Linearized
Method gives excellent results.  A comparison [Gao 1995]
between the Linearized Method and Monte Carlo simulation
found that the accuracy of the Linearized Method corresponded
to Monte Carlo simulation with a sample size of 30,000, for
quality levels near three sigma. However, for highly nonlinear
assemblies or highly skewed distributions, the Linearized
Method loses accuracy.

The Linearized Method expands the loop closure equation,
Equation 1, for small variations about the nominal by Taylor's
series expansion, retaining first order derivatives.  This
expansion yields:
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where dxj are the specified tolerances of the component
dimensions and duj are the resultant variations in the dependent
assembly dimensions.  This expression can be put in vector
form by forming the matrix A of partial derivatives 
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[ A ] {dx} + [ B ] {du} = { 0 } (3)

Solving for du:

{du} = -[ B-1] [ A ] {dx} (4)
Therefore, the product of the matrices -B-1A gives the
sensitivities of the dependent assembly dimension with respect
to the component dimensions.  Having established this
relationship, the Standard Deviation of the dependent assembly
dimension variations may be estimated by the root sum squares
expression:
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u

∂
∂  are the elements of the -B-1A matrix.

The formulation of the Linearized Method allows the
implicit assembly dimensions in the loop equations to be
expressed as an explicit, statistical function of the component
dimensions.

2.

3.

4.

Calculate Standard
Deviation

Fit Normal Distribution

Calculate Rejects

1. Calculate Sensitivities

Figure 2: Steps of the Linearized Method

Figure 2 shows the steps of the Linearized Method. Step 1
is the calculation of the sensitivities, the elements of the -B-1A
matrix. Step 2 uses Equation 5 to calculate the Standard
Deviation. Steps 3 applies a Normal distribution assumption to
the Standard Deviation calculated in Step 2. Finally, Step 4
calculates the rejects given the Normal distribution and
specification limits.

1.3 Monte Carlo Simulation
Monte Carlo simulation is a random number based method

for performing assembly tolerance analysis. The manufacture of
an assembly is simulated, for example, by creating a set of
component dimensions with small random changes to simulate
natural process variations.  Next, the resulting assembly
dimensions are calculated from the simulated set of component
dimensions.  The number of rejects that fall outside the
specification limits are then counted. These three steps are
illustrated in Figure 3.

Sample sizes generally range between 5,000 to 100,000
based on the required accuracy of the simulation.  The accuracy
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of Monte Carlo simulation increases with larger sample sizes.
Obviously, the computational effort of large sample sizes can be
significant, but Monte Carlo simulation offers many advantages
because of its flexibility.  Monte Carlo simulation allows any
component distribution to be specified and will calculate the
resulting assembly distribution.

1.

2.

3.

For each sample

Randomly Change All
Model Variables

Evaluate Model Function

Count Rejects

Figure 3: Steps of Monte Carlo Simulation

Monte Carlo simulation and the Linearized Method provide
different capabilities.  The Linearized Method can perform an
analysis and a tolerance allocation quickly, so it is suitable for
design iteration. The Linearized Method is limited in that it
cannot output non-normal distributions or handle non-normal
component distributions. Also, the Linearized Method will not
be accurate for highly nonlinear assemblies.  Monte Carlo
simulation allows non-normal input distributions and a
nonlinear analysis.  However, Monte Carlo simulation is
computationally expensive and does not accommodate rapid
design iteration. For example, if a single input parameter is
modified, the entire Monte Carlo simulation must be re-run.

Table 1: Comparison of Method Features
Features Linearized

Method
Monte Carlo
Simulation

SOTA
Method

Speed √ √
Tolerance allocation √ √
Closed-loop constraints √ √
Nonlinear approximation √ √
Non-normal input
distributions √ √

Non-normal output
distributions √ √

Table 1 summarizes the features of the Linearized Method,
Monte Carlo simulation and the Second-Order Tolerance
Analysis (SOTA) method proposed in this paper. The SOTA
method attempts to combine the features of the Linearized
Method and Monte Carlo simulation.

The next section of this paper, Section 2, discusses research
related to the SOTA method. Section 3 presents the SOTA
method. Section 4 compares the results of the SOTA method
with the Linearized Method and Monte Carlo simulation for a
sample problem.
2. RESEARCH REVIEW

2.1 Linearized Method
The Linearized Method, explained in Section 1.2, provides

a quick way to perform nonlinear tolerance analysis for both
explicit and implicit assembly dimensions of a vector-loop
tolerance model.  Because of its speed, the Linearized Method
is ideal for design iteration and tolerance allocation.  Multiple
research studies have continued to refine the Linearized
Method, making it more general and accurate.

The Direct Linearization Method (DLM) [Marler 1988]
prescribed a systematic approach to vector-loop model
tolerance analysis.  DLM has enabled the Linearized Method to
be applied to a broad range of tolerance problems.  Most
importantly, DLM has allowed a general tolerance analysis
methodology to be incorporated into a computer program
suitable for integration with a CAD system.

More recently, the Global Coordinate Method [Gao 1993]
for determining the partial derivatives of the loop equations was
developed.  This method simplified the calculations of these
derivatives.  In the same paper, Gao benchmarked the
Linearized Method against a comparable Monte Carlo
simulation system.  The benchmark results showed that the
accuracy of the Linearized Method corresponds to Monte Carlo
simulation with a sample size of 30,000 for quality levels of
three sigma.

The Linearized Method has demonstrated its usefulness as
a design tool.  However, the method is inadequate for highly
nonlinear tolerance problems and non-normal input
distributions.

2.2 Monte Carlo Simulation
Generally, Monte Carlo simulation is applied to an explicit

function of random variables.  However, the variables of
interest in the equations of a vector-loop tolerance model are
inherently implicit.  McCATS, a Monte Carlo based tolerance
analysis method developed recently [Gao 1995], is able to
adequately handle the implicit equations of a vector-loop
tolerance model.

The McCATS system starts by generating random variates
for the assembly variables.  These random variates are sent to
an assembly function that then solves the nonlinear system of
loop equations iteratively for the dependent assembly
dimensions.  The assembly dimensions are stored, new random
variates are generated, and the assembly function is called
again.  This procedure is continued until the desired number of
assemblies has been simulated.  Solving the loop equations
iteratively for each assembly simulation is critical to the
accuracy of the tolerance model.

Including the capability for kinematic constraints in Monte
Carlo simulation enabled Monte Carlo methods to be applied to
a much broader range of design problems.  However, the
required iterative assembly function does add more calculations
to an already computationally intense method.
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2.3 Method of System Moments
The Method of System Moments (MSM) [Cox 1979,

Shapiro 1981] is a technique for estimating system output based
upon the relationship between input and output variables and
information about the distribution of the inputs.  MSM is also
known as nonlinear propagation of error and propagation of
moments. MSM estimates the first four moments of a function
of random variables. The first four statistical moments are show
in Figure 4.

First Moment: 
 
 
 
Second Moment: 
 
 
 
Third Moment: 
 
 
 
Fourth Moment:

mean - measure of location 
 
 
 
variance  - measure of spread 
 
 
 
skewness  - measure of symmetry 
 
 
 
kurtosis  - measure of peakedness

x

+s-s

Figure 4: First Four Statistical Moments

MSM is formulated by expanding the function of interest in
Taylor series about its mean values.  Retaining second-order
terms the expansion yields:
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The approximate system mean, the first distribution
moment, is calculated by taking the expected value of the above
expression, which gives:
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The number of terms in the expressions for the higher
moments increases dramatically.  For instance, the second, third
and fourth moments require that the expected value be found for
Equation 6 raised to the second, third and fourth power.  The
expressions for the higher moments are simplified if the origin
is shifted to the mean values. In terms of the new notation, the
first four moments of the assembly dimensions are
approximated by the following four equations:
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The term ( )ji xµ  represents the ith distribution moment of the
jth component dimension.

Equations 10 and 11 have been truncated significantly in
order to simplify the expressions.  The complete third moment
equation is lengthy, and the complete fourth moment equation is
formidable. The complete equations for the third and fourth
moments may be found in [Cox 1979].

After calculating Equations 8 through 11, the four moments
about the mean may be found from:
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To estimate the four moments of an assembly distribution
using the full quadratic model requires the first eight moments
of the component dimension distributions and the partial
derivatives 
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In a comparison of advanced tolerance analysis methods
[Greenwood 1987], the Method of System Moments was
recommended as the best method.

3. THE SOTA METHOD
The second-order tolerance analysis (SOTA) method is

proposed as a general analysis method for vector-loop tolerance
models.  The SOTA method is comprised of a nonlinear system
solver, finite difference approximations for the first and second
order partial derivatives, the Method of System Moments
(MSM), and a Generalized Lambda Distribution (GLD)
empirical fit.  The difference equations and nonlinear solver are
used together to supply MSM with the required relationships
between the component dimensions and the resultant assembly
dimensions.  MSM is then used to calculate the first four
moments of the assembly dimensions.  Finally, GLD is used to
fit the calculated moments and approximate the distribution of
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the assembly dimensions.  The SOTA method process is shown
in Figure 5.

1.

2.

4.

5.

6.

For each variable

Change One (or Two)
Model Variable(s)

Evaluate Model Function

Calculate Moments

Fit Distribution

Calculate Rejects

3. Calculate Sensitivity

Figure 5: Steps of the SOTA Method

3.1 Difference Formulas
In order to approximate the three sets of partial

derivatives, 
j

i

x
u

∂
∂ , 

2

2

j

i

x
u

∂
∂  and 

kj

i

xx
u
∂∂

∂2 , three separate difference

formulas are required.  The linear partial derivatives are
approximated by a central difference formula:
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For this notation, ui(xj + ∆xj , ui)  represents a function
evaluation for the implicit assembly dimensions ui , where the
component dimensions, xj , are at their nominal value except
for the jth dimension, which is perturbed by a value ∆xj .  So,
Equation 16 indicates two function evaluations for each
component dimension xj .  Note that each function evaluation
requires an iterative solution of a system of nonlinear equations.

A three-point difference formula is used for the
approximation of the quadratic partial derivatives [Burden
1993].
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Two of the function evaluations that appear in this three
point difference formula also appear in the central difference
formula, Equation 16.  Therefore, if there are n component
dimensions, 2n function evaluations can be avoided if the same
function evaluations are used for both difference Equations 16
and 17.  If this is done, the quadratic partial derivatives will
require 2n function evaluations plus one evaluation at the
nominal and, without any further evaluations, the linear partials
can also be obtained.

The approximation of the cross-derivatives is more
complicated.  These partial derivatives are found by using the
central difference of a central difference.
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For n component dimensions there are (n2-n)/2 unique
cross-derivatives. Four new function evaluations must be
performed for each derivative. Therefore, 2n2-2n evaluations
are required to obtain the cross-derivatives.  Together with the
2n+1 function evaluations for the linear and quadratic partial
derivatives, the total becomes 2n2+1 function evaluations.
Thus, with 2n2+1 function evaluations, the required partial
derivatives for the SOTA method are obtained.

3.2 Distribution Fit
The Generalized Lambda Distribution was chosen as the

best empirical model for fitting the statistical moments based on
ease of implementation.  The single form of the GLD make the
method of matching of moments easily applied to the moments
calculated by MSM, whereas, the Johnson and Pearson systems
require multiple distribution forms to cover a full range of
moments.  In addition, a GLD table, indexed by skewness and
kurtosis values, was readily available for use in a computer
program because of earlier research [Gao 1995].  The GLD's
range of coverage is smaller than the Johnson and Pearson
systems, however, it does cover most practical distribution
shapes likely to be encountered in mechanical assemblies.

4. EXAMPLE
The following One-Way Clutch example problem

illustrates the performance of the SOTA method compared to
Monte Carlo Simulation and the Linearized Method. The
example problem was analyzed using the SOTA method, the
Linearized Method and Monte Carlo simulation at four different
sample sizes. The four sample sizes were 30,000 samples,
100,000 samples, 106 samples and 109 samples.
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A one-way clutch transmits torque in a single direction.
The clutch assembly consists of the following components: a
hub, an outer ring, four rollers, and four springs.  When the hub
rotates in a counter-clockwise direction, the roller wedges
between the hub and the ring, locking these two parts together.
When the hub turns in a clockwise direction, the spring is
compressed by the roller, the roller slips, and the hub is allowed
to rotate freely.  The one-way clutch assembly and the single
vector loop used to model this assembly are shown in Figure 6.

Ring

Roller

Hub

Spring φφφφ

x Ring
Roller

A

B C

D

E

y

Hub

φφφφ2

1

Figure 6: One-Way Clutch Assembly

The function of the one-way clutch mechanism is governed
by the pressure angle φφφφ1. There are three manufactured
dimensions that control the pressure angle.  The mean values,
standard deviations and distribution types of these three
dimensions are shown in Table 2.  The vectors representing the
roller radius, vectors C and D, were treated as the same
variation source.  As the pressure angle, φφφφ1, is critical to the
function of the clutch, it was given specification limits as shown
in Table 3.

Table 2: Input Variables
Name Mean Standard Deviation Distribution
A 27.645 mm 0.01666 mm Normal
C, D 11.430 mm 0.00333 mm Normal
E 50.800 mm 0.00416 mm Normal

Table 3: Assembly Specification
Name Nominal Lower Limit Upper Limit
φ1 7.0184° 6.4184° 7.6184°

4.1 Analysis Results
The One-Way Clutch analysis results are displayed in Table

4 and Table 5. Table 4 shows the calculated values for the first
four statistical moments of the pressure angle. The One-Way
Clutch assembly was a good test problem since the pressure
angle exhibits nonlinear behavior. The results show the pressure
angle to be negatively skewed and slightly more peaked than a
Normal distribution. Because all the input distributions were
symmetric, this skewness indicates that the pressure angle is an
inherently nonlinear function. Of course, the skewness value
calculated by the linear analysis was zero since the linear
analysis cannot estimate this non-linearity.
Table 5 contains the predicted parts-per-million (PPM)
assemblies that fall outside of the specification limits of the
pressure angle. All the Total Rejects results were within 1000
PPM of the Monte Carlo simulation of 109 samples.

Table 4: Statistical Moments Results
Analysis Mean Standard

Deviation
Skewness Kurtosis

MC 1e9 7.014953 0.219668 -0.09442 3.023816
MC 1e6 7.015373 0.219884 -0.09477 3.027695
MC 100k 7.015453 0.220172 -0.10168 3.021511
MC 30k 7.012982 0.220541 -0.09758 3.082748
SOTA 7.014968 0.219346 -0.09356 3.011671
Linear 7.018389 0.219292 0 3

Table 5: PPM Rejects Results
Analysis Lower Rejects Upper Rejects Total Rejects

MC 1e9 4406 2166 6572
MC 1e6 4467 2206 6673
MC 100k 4580 2080 6660
MC 30k 5000 2567 7567
SOTA 4196 2322 6518
Linear 3109 3109 6218

In order to compare the results of the six analyses, a
relative error measure was calculated for the estimates of the
statistical moments and the estimate of PPM rejects. Monte
Carlo Simulation with 109 samples was assumed to be the most
accurate analysis and was, therefore, used as the baseline for the
relative error comparison.

Percent Error of the Mean

0.000%

0.005%

0.010%

0.015%

0.020%

0.025%

0.030%

0.035%

0.040%

0.045%

0.050%

MC 1e6 MC 100k MC 30k SOTA Linear

Figure 6: Error of the Mean

Figure 6 compares the error of the pressure angle mean
with respect to the Monte Carlo 109 analysis. All five analyses
estimated the mean very accurately to within 0.05% error. The
SOTA method was the most accurate with only 0.0002% error.
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Figure 7 displays the error of the standard deviation. The
standard deviation values were also very accurate with the error
ranging from 0.10% for the Monte Carlo 106 to 0.40% for the
Monte Carlo 30k. Both Figure 6 and Figure 7 clearly illustrate
how Monte Carlo Simulation should increase in accuracy as the
sample size increases.

Percent Error of the Standard Deviation

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0.30%

0.35%

0.40%

0.45%

MC 1e6 MC 100k MC 30k SOTA Linear

Figure 7: Error of the Standard Deviation

The truncation of nonlinear terms of the linear analysis is
evident in the skewness results. With symmetric input
distributions, a linear analysis will always predict a skewness
value of zero. Figure 8 shows the absolute error of the
skewness. With the exception of the linear result all skewness
values are relatively accurate.

Error of the Skewness

0.00
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0.03
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0.05
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MC 1e6 MC 100k MC 30k SOTA Linear

Figure 8: Error of the Skewness

The percent error of the kurtosis values is shown in Figure
9. With the exception of the Monte Carlo 30k result, all the
kurtosis values had errors under 1%.

The process of calculating rejects for an assembly
specification involves the four statistical moments and fitting a
distribution to these moments. The Generalized Lambda
Distribution was fit to the four moments in all six analyses. The
reject results are a composite result of all four statistical
moment estimates and, therefore, provide a good overall
measure of accuracy for an analysis.

Percent Error of the Kurtosis

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

1.60%

1.80%

2.00%

MC 1e6 MC 100k MC 30k SOTA Linear

Figure 9: Error of the Kurtosis

Figure 10 shows the error of the upper, lower and total
PPM rejects relative to the Monte Carlo 109 analysis. The linear
analysis predicted symmetric rejects: 3109 ppm for the lower
limit and 3109 ppm for the upper limit. The linear
appoximation of the nonlinear pressure angle function resulted
in an underestimate for the lower rejects and an overestimate for
the upper rejects.
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Figure 10: Error of the Rejects

The second-order approximation of the SOTA method
dramatically improved the estimate of rejects over the linear
approximation. While the SOTA method still slightly
underestimated the lower rejects and slightly overestimated the
upper rejects, the total rejects estimate was within 54 ppm of
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the Monte Carlo 109 analysis, roughly equivalent to the Monte
Carlo 100k results.

4.2 Computational Effort
For the three methods, Monte Carlo simulation, the SOTA

method and the Linearized Method, a relative measure of effort
is easily formulated.  The common operation of these three
tolerance analysis methods is that each must perform a linear
solution of the loop equations.  For example, the SOTA method
and Monte Carlo simulation require a linear solution of the loop
equations for each iteration of Newton's method.  Of course the
Linearized Method only requires a single linear solution.  So, if
the Linearized Method is given an effort value of 1, the relative
effort of Monte Carlo simulation and the SOTA method may be
evaluated by the following expressions:

MC Effort = (sample size) x (average Newton iterations)
SOTA Effort = (2n2+ 1) x (average Newton iterations)

For the SOTA Effort expression the variable n is the
number of component dimensions.

It would be expected that the number of iterations of
Newton’s method be greater for Monte Carlo simulation than
for the SOTA method.  For each nonlinear solution, Monte
Carlo simulation changes the nominal value of all the
component dimensions, whereas the SOTA method only
changes one or two component dimensions for each solution.
Furthermore, the step size used by the SOTA method will
generally be very small compared to the variations required by
Monte Carlo.  The average number of Newton iterations along
with the effort metrics for the six analyses is shown in Table 6.

Table 6: Relative Computational Effort
Analysis Average

Iterations
Effort

MC 1e9 3.40 3,400,000,000
MC 1e6 3.40 3,400,000
MC 100k 3.40 340,000
MC 30k 3.41 102,300
SOTA 2.16 41
Linear 1 1

5. CONCLUSIONS
The SOTA method is a general, nonlinear tolerance

analysis method for vector loop tolerance models. The SOTA
method provides the benefits of speed, tolerance allocation,
closed-loop constraints, a nonlinear approximation and the
capability for non-normal input and output distributions.

For the One-Way Clutch example problem the SOTA
method shows a dramatic improvement in accuracy over the
linear approximation for the estimates of the four statistical
moments of the pressure angle. The estimate of total rejects
result for the SOTA method was comparable to the Monte Carlo
result using 106 samples. This accuracy level is significant since
the computational effort of the SOTA method was five orders of
magnitude less than the Monte Carlo simulation with 106

samples.
Seven additional example problems were analyzed [Glancy

1994] and demonstrated similar results.
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