





# What is Manufacturing Variation? Sigmetrix







Imperfections in geometry and clearances between parts cause undesirable adjustments within assemblies

# What is CETOL $6\sigma$ Addressing? $\checkmark$ Sigmetrix







- 1) Part-level dimensioning & tolerance scheme
- Assembly-level kinematic relationships between contacting surfaces



# Input Variables from CETOL $6\sigma$ Sigmetrix



- CETOL is driven by an XML-based model file (.CXM)
  - Created using the CETOL Modeler
  - Rich with unique assembly constraint and tolerance variables
- Input Variables to Optimus
  - Size, dimension, & GD&T tolerances
  - Feature sizes & positions
  - Design nominal values
  - Design nominal manufacturing distribution parameters







# CETOL 60 Output Variables



Geometric variation-related analysis results for each measurement

- 1) Quality metrics (Cp, Cpk, sigma, % yield, etc)
- 2) Worst-case variation limits
- Statistical distribution parameters
- 4) Calculated nominals
- 5) Geometric sensitivities
- 6) Percent contributions
- 7) ...





#### Basic CETOL Simulation Workflow





# Common Applications



### Include mechanical variation effects in:

- 1) Multi-objective performance optimization
- 2) Multi-physics simulation and optimization
- 3) Design robustness optimization
- 4) Manufacturing cost optimization

## **CETOL Example**



#### Assembly Tolerance Analysis



## 1) Multi-Objective Optimization



Objective: Determine the design tolerance values that achieve the quality targets of multiple, conflicting design goals



### 2) Multi-Physics Optimization



Objective: Determine largest design tolerance values that still achieve the optical cell focal length & centerline error maximum variation requirement



### 3) Robustness Optimization



Objective: Find the location of the Claw hole feature that minimizes the claw force sensitivity to manufacturing variation.



## 4) Manufacturing Cost Optimization



Objective: Determine the design tolerance values that minimize the total cost of manufacturing the seat latch



#### CETOL 6σ and Optimus



Analyze. Optimize. Understand.